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Executive Summary 
 
This report presents results from Wonboyn River, one of the estuaries selected as part of 
Stage 1 of the NSW Oyster Industry Transformation Project 2017-2021. To predict the impact 
of rainfall on potentially pathogenic bacteria, Harmful Algal Blooms (HABs) and oyster 
disease, precise environmental data with a high temporal frequency were collected and 
modelled. Combined with state-of-the-art molecular genetic methods, this information will 
help to improve efficiency and transparency in food safety regulation, provide predictive 
information and provide insights for more informed and responsive management of shellfish 
aquaculture.  
 
We installed a real-time sensor in Wonboyn Lake A harvest area, Wonboyn River, recording 
high-resolution temperature, salinity and depth data. Oyster farmers collected weekly 
biological samples (669 environmental DNA samples and 303 deployed/retrieved oysters for 
growth assessment) from the sensor site. We developed a rapid molecular qPCR (quantitative 
polymerase chain reaction) assay for E. coli, which could directly compare to the currently 
used plate count by commercial laboratories. We also developed specific qPCR assays that 
could determine which animals were contributing to the E. coli load in the river system. We 
used these assays to observe trends in faecal pollution and modelled these in relation to 
environmental variables (salinity, temperature, rainfall etc.), to develop predictive models. 
Finally, we developed an additional model to link oyster growth with environmental variables 
and assessed its predictive capability.  
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1. Introduction 
 
1.1 Transforming Australian Shellfish Production 

The Transforming Australian Shellfish Production Project (TASPP) follows on from the success 
of the NSW Oyster Industry Transformation Project (NSWOITP), which is a UTS led, 
multidisciplinary collaboration between oyster farmers (NSW Farmers Association), 
researchers (UTS, DPI Aquaculture and Fisheries), regulators (DPI Biosecurity and Food Safety) 
and the Food Agility CRC. The project uses real time, high-resolution salinity, temperature and 
depth sensing, combined with novel molecular genetic methods (eDNA), to model oyster food 
safety, pathogenic bacteria, harmful algae, and oyster growth and disease, with the aim of 
improving production and harvest management and to reduce harvest closure days for 
farmers.  
 
As filter feeders, shellfish like oysters and mussels actively remove particles from surrounding 
waterways. Following high-risk events such as heavy rainfall or harmful algal blooms, 
regulators like the NSW Food Authority implement precautionary harvest area closures to 
manage potential food safety risks or implement shellfish movement restrictions to manage 
potential biosecurity risks. Shellfish farmers in Australia are not currently able to predict the 
likelihood of a harvest area closure due to these high-risk events. If farmers were aware of 
imminent closure, they could take meaningful action such as harvesting early, or moving stock 
to lower risk areas. The same environmental variables that influence food safety can also 
impact on oyster health and can increase the risk of certain diseases. Understanding these 
relationships and monitoring these variables could be used to reduce the risk and severity of 
disease outbreaks. 
 
This project will deliver functioning, estuary-specific models relating to oyster growth, disease 
risk, harmful algal bloom risk, sources of contamination, and other supporting factors 
influencing industry productivity. Each of these models will relate biological data to high 
frequency water quality metrics as measured by real-time sensors deployed in situ. 
 
Stage 1 (2017-2021) of the project has been successfully completed, with ~5000 water and 
3000 oyster samples collected across 13 NSW estuaries engaged in the project. Stage 2 (2021-
2024) is now underway, with two further NSW estuaries engaged, and expansion of the 
project into Western Australia. Sample processing, data analysis and report writing will 
continue during this second phase, with modelling to predict oyster growth and mortality 
rates, including key oyster diseases such as Marteilia sydneyi (QX) and Winter Mortality, and 
the intensity of harmful algal blooms planned. As part of these analyses, novel qPCR assays 
for E. coli (bird, cow, human) and harmful algal species (Pseudo-nitzschia spp., Dinophysis 
spp., Prorocentrum minimum), which were developed during Phase 1, will also be 
implemented. 
 
Preliminary results from this high frequency data have already demonstrated the link 
between salinity levels related to rainfall and E. coli levels. In 2019, the NSW Shellfish 
Program's Annual Sanitary Survey Report (DPI) stated that using this real-time, high frequency 
environmental data, the project provided the basis for a change to the management plans for 
the Pambula River harvest area and the Cromarty Bay harvest area (Port Stephens). These 
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management plan changes mean that harvest area openings and closures can be based on 
salinity-only data, with unnecessary extra harvest closure days avoided. As early adopters of 
the technology for harvest area management, an independent economic assessment by NSW 
DPI completed in January 2021 evaluated Pambula River and Cromarty Bay. The report 
highlighted positive benefits for industry using salinity-based management plans. Focusing on 
the six-month period where oysters were at peak marketable condition, it was estimated that 
up to two extra weeks of harvest could be achieved, with a projected annual net profit boost 
of $15,344 (Cromarty Bay) and $95,736 (Pambula River) for the study areas, based on current 
lease area used. The full report is available on the NSW Food Authority website.  
 
Across the NSW shellfish industry, the potential economic benefit from the use of real-time 
sensors for harvest area management is conservatively estimated at up to $3 million annual 
farm gate value. Increased revenue will improve the confidence of the industry to further 
invest and drive more growth. As of January 2023, eighteen salinity-only management plans 
had been offered for harvest areas in participating NSW estuaries, with six being taken up and 
the remaining twelve under consideration. 
 
1.2 Wonboyn River 

Wonboyn River (-37.2° S, 149.9°E) is a barrier river with an intermittently closed entrance. It 
has a catchment area of ~335 km2, an estuary area of ~4.2 km2, and a flushing rate of ~66.4 
days (Roy et al. 2001, Roper et al. 2011) (Fig. 1). The river has important seagrass (0.8 km2) 
and saltmarsh areas (0.5 km2) (Roy et al. 2001), with the surrounding catchment mainly 
forested. The exception to this is a small area of urban and grazing land associated with the 
townships of Wonboyn and Narrabarba (https://www.dpie.nsw.gov.au/).  
 
1.3 Oyster Production in Wonboyn River 

Wonboyn River is a mid-range producer of Sydney Rock Oysters in Australia, with production 
in 2020/21 of 101K dozen and valued at ~$1.1 Mil (NSW Department of Primary Industries, 
2023). Wonboyn River is located toward the southern extent of the main growing range for 
Sydney Rock Oysters on the east coast of Australia. The 2019-2020 mega bushfires resulted 
in large areas of damage to the Wonboyn catchment. Significant threats to this industry now 
include catchment runoff resulting in increased turbidity, altered pH, reduced dissolved 
oxygen, and a potential increase in harmful algal blooms. 
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2. Findings 
 
2.1. The data assessment from this report supports implementing a harvest area management 
plan based on sensor salinity data for Wonboyn Lake harvest areas, subject to agreement by 
the local shellfish industry. Available data indicated that up to six harvest area closures, three 
in Wonboyn Lake A harvest area and six in Wonboyn Lake B harvest area, could have 
potentially been avoided between February 2018 and March 2022.   
 
2.2. We developed rapid, efficient, and sensitive qPCR assays for E. coli, cow, bird, and human 
faecal indicators, and used these rapid genetic tools to track these sources of pollution in 
Wonboyn River over the biological sampling period, September 2018 to September 2020. 
 
2.3. The real time sensor data showed a higher predictive capacity than rainfall data for all 
four faecal indicator bacteria. 
 
2.4. The abundance of cow and human bacteria were generally low across the sampling 
period; however, the abundance of E. coli and bird bacteria were on occasions, very high. The 
maximum predictive capability for each bacterial group were 40% for E. coli, 41% for cow, 
30% for bird, and 61% for human at the sensor site. 
 
2.5 Where the models were predictive, they often suggested bacterial abundance increased 
with varying salinity which may be linked to a lack of flushing within the River and/or a lag 
with input from the upper catchment. 
 
2.6. The greatest oyster growth in terms of whole oyster weight occurred during the last 10 
months of the experiment (August 2019 to June 2020), however none of the environmental 
variables measured/modelled were predictive of oyster growth.  
 
2.7. Cumulative oyster mortality in Wonboyn River over the study period was 22.7% which is 
just above the background farming Sydney Rock Oyster mortality level (approximately 10% 
per annum), however, mortality did not exceed 5% between sampling occasions. 
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4. Feedback 
In May 2018, the Oyster Transformation Team held information workshops to allow farmers 
to have their say in the project. The workshops were held in Pambula (Pambula Fishing Club) 
and Bateman’s Bay (Catalina Country Club). 

Farmers were asked to rate the following factors in order of importance and benefit to their 
business operations (Fig. 4.1). In order of importance (highest to lowest) was the potential to 
predict algal blooms, longer harvest opening times, reduced stock mortality/disease, 
forecasting of harvest area closures, and access to real time tidal and monitoring data.    

Group discussions followed, whereby additional issues that farmers raised were: the 
suitability of the sensor location and BOM rainfall gauge; and the breakdown of bacterial data 
into human and animal sources. 

 

 

 

Figure 4.1. The importance of factors as rated by farmers in relation to their business operations. Green is 
most important and brown is least important.  
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5. Results 
5.1 High resolution temperature and salinity data 

High-resolution real time data summaries for Wonboyn River for the period 13 Feb 2018 to 4 
Feb 2021 are shown in Figs. 5.1A-C. Limited data is available between 15 Jun 2020 and 17 Jul 
2020, when sensor stopped working and then restarted independently (the cause was not 
determined). Depth recordings ranged from 0.3 m (23 Jan 2020) to 1.6 m (28 Jul 2020). The 
lowest and highest daily average salinity recordings were 0.6 ppt (31 Jul 2020) and 39.1 ppt 
(5 Feb 2020) respectively, while the lowest and highest daily average temperature recordings 
were 11.3℃ (16 Jul 2019) and 29.3 ℃ (1 Jan 2020) respectively.  

Figure 5.1A-C. Real time sensor data from Wonboyn River 13 Feb 2018 4 Feb 2021 A. Depth (m); B. Daily 
average salinity (ppt); and C. Daily average temperature (°C). 
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The maximum daily rainfall at the WLSP gauge occurred on 28 July 2020 and was reported as 
80 mm (Fig. 5.2).  

Eleven rainfall events were sampled across the study period. These occurred on 17-19 Dec 
2018, 6-8 Feb 2019, 19-21 Mar 2019, 31 Mar-2 Apr 2019, 11-13 May 2019, 9-12 Feb 2020, 7-
9 Mar 2020, 23-25 May 2020, 13-15 Jul 2020, 27-29 Jul 2020, and 17-19 Aug 2020. The 
maximum daily rainfall occurred on 28/7/2020 and was reported as 80 mm at WLSP/Henry’s 
Gauge (37.25oS, 149.919oE) (Fig. 5.2). 

 

Figure 5.2. Daily rainfall (mm) from WLSP/Henry’s gauge 37.25oS, 149.919oE from Feb 2018 to Feb 2021. 

5.2 Management Plan  

Data analysed during the 2019 annual reviews of Wonboyn Lake harvest areas indicated that 
there could have been fewer harvest area closures since the sensor was installed, if closures 
were based on salinity sensor data. There were nine harvest area rainfall closures between 
February 2018 and March 2020 in Wonboyn Lake A harvest area. Based on a management 
closure limit of 27 ‰, harvest area closures were modelled based on available salinity sensor 
data and shellfish program microbiological results since February 2018. For Wonboyn Lake A, 
up to 20 harvest closure days occurred over three rainfall closures, although salinity sensor 
data did not decline below 27 ‰ and microbiological results from samples collected between 
3-7 days post closure met Approved harvest criteria. Wonboyn Lake B harvest are is situated 
downstream of Wonboyn Lake A harvest area There were ten harvest area rainfall closures 
between February 2018 and March 2020 in Wonboyn Lake B harvest area. Based on a 
management closure limit of 27 ‰, harvest area closures were modelled based on available 
salinity sensor data and shellfish program microbiological results since February 2018. For 
Wonboyn Lake B, up to 26 harvest closure days occurred over six rainfall closures, although 
salinity sensor data did not decline below 27 ‰ and microbiological results from samples 
collected between 0-4 days post closure met Approved harvest criteria.  

During the more recent 2021 and 2022 annual review periods (April 20 – March 22), there 
were seven harvest area rainfall closures and two harvest area salinity closures in Wonboyn 
Lake A harvest area. There were two additional rainfall closures in Wonboyn Lake B harvest 
area during the same period. Data analysed during the 2021 and 2022 annual reviews 



17 
 

indicated there were no occasions when the harvest area would have remained open for 
harvest when comparing operations under a rainfall or sensor salinity-based management 
plan. This was due to wetter conditions that occurred during this time. A division of Wonboyn 
Lake A harvest area into two harvest areas, Wonboyn Lake A and Wonboyn Lake C, came into 
effect on 15 August 2022. The use of sensor salinity for harvest area management is also 
possible, based on the previous analysis of data from Wonboyn Lake A harvest area.  

Time periods where salinity is slower to recover may require additional sampling to meet 
management plan requirements. A review of the available data also indicated that given 
fluctuations in salinity between high and low tides, particularly after prolonged wet periods, 
decisions on harvest area closures would consider salinity trends rather than point in time 
measurements. 

5.3 Bacterial source tracking  

A total of 669 water samples and 303 oysters were collected over a two-year period (a subset 
of the entire sensor data collection time) from Sept 2018 to Sept 2020 from the sensor 
location in Wonboyn River (Fig. A1).  

For Wonboyn River the maximum E. coli reached 182,188 gene copies 100 mL-1 on 8 Mar 
2020, 47,038 copies 100 mL-1 for Helicobacter (bird) on 7 Feb 2019, 19,469 gene copies 100 
mL-1 for bovine faecal pollution (cow) again on 8 Mar 2020, and finally, 411 copies 100 mL-1 
for human faecal pollution on 17 Mar 2020 (Fig. 5.3 A-D).   
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Figure 5.3 A-D. Weekly E. coli data from the sensor location, Wonboyn River, using A. E. coli assay; B. Bird assay; 
C. Cow assay; and D. Human assay. Purple bars represent rainfall events that were sampled. Dotted lines in Fig. 
A at 14 and 70 cfu/100 mL are the operational limits for direct or restricted (oysters must meet depuration 
requirement) harvest, respectively, depending on individual harvest area classification. Wonboyn Lake A Harvest 
area, Wonboyn River, is classified as Conditionally Approved.  
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.p
df.  

https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
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Figure 5.4 Weekly faecal coliform counts (cfu/100 mL) from water samples collected by DPI Food Authority at 
three sites in Wonboyn River compared to the Oyster Transformation Project sensor site weekly sampling results 
(including rainfall sampling). Dotted lines at 14 and 70 cfu/100 mL are the operational limits for direct or 
restricted (oysters must meet depuration requirement) harvest, respectively, depending on individual harvest 
area classification (see above). 
 
Elevated faecal coliform counts reported by the DPI Food Authority often corresponded to 
elevated levels in samples collected by the CRC, however at other times the CRC samples 
often revealed significantly higher counts compared to those collected by the Food Authority 
at the same time suggesting it may be a more sensitive assay that the traditional plate count 
method (Fig. 5.4).  

Eleven rainfall events were sampled across the study period (see purple bars in Fig 5.3 A-D). 
These occurred on 17-19 Dec 2018, 6-8 Feb 2019, 19-21 Mar 2019, 31 Mar-2 Apr 2019, 11-13 
May 2019, 9-12 Feb 2020, 7-9 Mar 2020, 23-25 May 2020, 13-15 Jul 2020, 27-29 Jul 2020, and 
17-19 Aug 2020. E. coli was highly variable across rainfall sampling campaigns. In some 
instances, highest counts coincided with peak rainfall days, while at other times counts were 
highest after rainfall had declined (Fig. 5.5 A-K). It is unclear without further sample collection, 
how quickly these levels would have dissipated. Bird contamination was also highly variable 
across rainfall sampling, but was observed most often during the summer - autumn months. 
Bovine generally remained low, while human bacteria was very low or below detection limits 
during all events (Fig. 5.5A-K).  
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Figure 5.5 A-K. Sensor site (Wonboyn River) rainfall events sampled for E. coli assays. Green bar = 16S E. coli; 
blue bar = bird assay; purple bar – cow assay; red bar = human assay. Dotted line is rainfall (mm) obtained from 
the closest rainfall station (WLSP/Henry’s gauge 37.25oS, 149.919oE). All bars are the mean value of nine 
replicate samples (3 biological x 3 technical) and the error bars are the standard error of all nine replicates.  

5.4 Phytoplankton enumeration and HAB events  

The maximum phytoplankton cell concentration across the sampling period (Feb 2018 to Feb 
2021) occurred on 26 May 2018 (Fig. 5.6). Total cell concentrations reached 4.4E +07 cells L-1 

and the sample was dominated by the planktonic diatom Minidiscus with a small variety of 
small flagellates (cryptomonads, dinoflagellates, prasinophytes) but few other diatoms. This 
bloom did not coincide with any significant rainfall event on the day, but was preceded with 
elevated rainfall (66 mm on 13 May 2018) which may have been a contributing factor. 

Potentially harmful bloom events across the sampling period included blooms of the diatom 
Pseudo-nitzschia delicatissima gp. which reached a maximum cell concentration of 2.1E +06 
cells L-1 on 31 Nov 2018 (elevated levels were reported from 27 Oct 2018 to 9 Nov 2018), and 
Pseudo-nitzschia fraudulenta/australis, which reached 5.5E +04 cells L-1 on 22 March 2020. 
The NSW Food Authority’s Phytoplankton Action Limit to trigger biotoxin testing for P. 
delicatissima is 500,000 cells L-1 and 50,000 cells L-1 for P. australis & multiseries. 

Other bloom events were caused by the toxic dinoflagellate Alexandrium australiense which 
reached a maximum cell density of 300 cells L-1 on 27 Sept 2020, and Alexandrium minutum 
which peaked on 27 Jan 2020 at 850 cells L-1. The NSW Food Authority’s Phytoplankton Action 
Limits to trigger biotoxin testing for any toxic Alexandrium species is 200 cells L-1 (NSWFA 
2015).  

Finally, the toxic dinoflagellate Dinophysis caudata was reported above guideline levels (NSW 
Food Authority’s Phytoplankton Action Limit of 500 cells L-1) in many instances across the 
sensor deployment period. From early to late Nov 2018, cell densities were elevated, reaching 
a maximum cell density of 2,200 cells L-1 on 24 Nov 2018. Again, on 2 March 2019, cell 



22 
 

densities reached 500 cells L-1. During February to April the following year, D. caudata was 
observed to be elevated, with a maximum cell count of 2,300 cells L-1 on 1 March 2020. 
Similarly, in Sept that same year, D. caudata became elevated and peaked at 2,700 cells L-1 
on 5 Oct 2020. High cell densities were reported again on 7 Dec 2020 (950 cells L-1). Routine 
biotoxin tests collected by WLSP reported 0.035 (5 April 2020) and 0.029 (5 October 2020) 
mg/kg pectenotoxin 2 (PTX2). Traditionally, regulation of diarrhetic shellfish toxins (DSTs) 
included okadaic acids, dinophysistoxins and pectenotoxins, and when detected and 
quantified, their concentrations have been combined. To date, there is no evidence that 
pectenotoxins are toxic to humans, although acute toxicity has been demonstrated in animals 
(Munday and Reeve 2013). In 2021, the pectenotoxin group was deregulated in the European 
Union, and removed from their grouping with okadaic acid and dinophysistoxins in reference 
to their maximum concentrations in bivalve molluscs. No other positive biotoxin results were 
reported in routine monitoring samples collected by WLSP during the same period. 

 

Figure 5.6 Log abundance of total phytoplankton sampled approximately fortnightly from 13 Feb 2018 to 4 Feb 
2021 

5.6 Oyster Growth and Mortality  

5.6.1 Oyster Growth  

Average oyster whole weight increased by 21.4 g from deployment in August 2018 to June 
2020 (Fig. 5.7 A).  Oyster whole weight increases were greatest from August 2019 to June 
2020 when oysters increased their weight by 13.7 g in 10 months.  Oyster whole weight was 
44 ± 3.2 g at the end of the experiment (June 2020). Oysters deployed in Wonboyn River did 
not reach the large size grade (> 70 mm total length or > 50 g whole weight) when measured 
at the conclusion of the experiment.  The average oyster size at the end of the experiment in 
June 2020 was ‘Medium’ grade (> 55 mm and < 70 mm total length and > 30 g and < 50 g 
whole weight) and were 42 mo on this date.  

Oyster size, in terms of shell length, did not increase over the duration of this experiment.  
Average shell length was 57 ± 1 mm at the start of the experiment and was 59 ± 2 mm at the 
end of the experiment in June 2020 (Fig. 5.7 B).  Shell lengths were measured more frequently 
than whole weight and fluctuated throughout the experiment.  The maximum average shell 
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length measured during the experiment was 63 mm in December 2019 and the minimum was 
53 mm measured in September 2018.  Slight shell length increases in Wonboyn River were 
recorded from October to November 2018 and July to September 2019. However, the 
increase in shell size through these periods was only 4 mm and 7 mm, respectively. Periods 
of shell length decreases were recorded on six occasions and were between August and 
September 2018, November and December 2018, January and February 2019, June and July 
2019, October and November 2019 and February and June 2020.    

5.6.3 Mortality  

From August 2018 to February 2020, cumulative oyster mortality was 23.3% in Wonboyn 
River.  Low levels of mortality were recorded in most months throughout the experiment 
except for April 2019, September 2019 and December 2019 where no dead oysters were 
found in any of the replicate baskets (Fig 5.7 D). The month that had the highest level of 
mortality recorded was December 2018 (4.3%), however, mortality on this date was less than 
5%.  Oyster mortality over the study period in Wonboyn River exceeded the background 
Sydney Rock Oyster farming mortality level which is estimated to be approximately 10% per 
annum.  Most mortalities occurred in the first four months of the experiment (Figures 5.7 C 
and D) where cumulative mortality reached 13.7% in December 2018.  Oysters from this site 
remain frozen for future analyses.  

 

Figure 5.7 A-D. Oysters deployed at the sensor site, Wonboyn River. A. whole weight; B. shell height; C. 
cumulative mortality, and D. monthly mortality.  
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5.7 Modelling   

5.7.1 Modelling of E. coli data   

Summary statistics for all bacterial concentrations and environmental variables used in the 
general additive models are shown in Appendix 2. Correlation coefficients were calculated 
among every pair of environmental variables and suggested very few strong positive 
relationships (r > 0.7) overall. A total of 4 models were developed for each of the bacterial 
sources: sensor only; sensor and total phytoplankton (logged or unlogged); rainfall only; and 
rainfall and total phytoplankton. Depth and week were included as response variables in all 
models. The maximum predictive capability for each bacterial group at the sensor site were: 
40.3% for E. coli (sensor + total phytoplankton), 29.9% for cow (sensor + total phytoplankton), 
41.1% for bird (sensor + total phytoplankton) and 61.4% for human (sensor + total 
phytoplankton) (Table 1).  

The abundance of E. coli was significantly better predicted using sensor data compared to 
rainfall data (40.3% compared to 14% deviance explained), and appeared to be significantly 
linked to an increase in water temperature, varying salinity over the past 72 hours as well as 
increasing phytoplankton. Data indicated that a peak E. coli coincided with a peak surface 
water temperature of ~>25℃ and was lowest with a salinity ~20 ppt (Table 1) (Figures 5.7 A-
D, 5.8 A-D).  

The prediction of bovine bacterial abundance was significantly improved using the sensor 
data (29.9%) compared to a model with rainfall data (2.2%), with total phytoplankton only 
marginally improving this predictive capability. Modelling showed peak contamination was 
linked to varying salinity (high or low) and an increasing surface water temperature (peaking 
at ~>25℃) (Table 1). 

Faecal contamination from birds was again significantly better explained using the sensor 
data (41.1% deviance explained, compared to 7% using rainfall data), with a peak salinity of 
30 ppt and surface temperature of ~>25℃. Adding phytoplankton data to the model made 
little difference to its predictive ability (Table 1). 

An increase in human bacteria abundance was again best explained by the sensor data 
(61.4%) compared to rainfall (25.3%), and was linked to a decreasing salinity and an increasing 
surface water temperature. Adding phytoplankton data to the model only marginally 
improved its predictive capability (Table 1). 

5.7.2 Modelling of oyster growth and mortality  

While there was insufficient oyster weight data to model (only 4 data points across the 
sampling period), there was sufficient shell length data to model. The best model explained 
~47.5% of the deviance, with the strongest predictor variables being the week of the year. 
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Table 1. Modelling results for bacterial source tracking at the sensor site in Wonboyn River. Only 
significant variables are shown for each model.  

Bacteria Variables No. of 
observations 

Significant Variables Deviance 
Explained 

E. coli Salinity, Depth, 
Temp 

119 Depth72**, Salinity72***, 
Temp72*** 

37.6% 

E. coli Salinity, Depth, 
Temp, 
logPhytoplankton 

119 logPhytoplankton ***, 
Depth**, Salinity***, 
Temp*** 

40.3% 

E. coli Rainfall72 125 Rainfall72*** 6.07% 
E. coli Rainfall72, 

logPhytoplankton 
125 Rainfall72***, 

logPhytoplankton *** 
14.1% 

Bird Salinity, Depth, 
Temp 

119 Salinity***, Depth***,  
Temp*** 

40.6% 

Bird Salinity, Depth, 
Temp, 
logPhytoplankton 

119 Salinity***, Depth***, 
Temp***,  
logPhytoplankton *** 

41.1% 

Bird Rainfall72 125 Rainfall72*** 7.01% 
Bird Rainfall72, 

logPhytoplankton 
125 Rainfall72***, 

logPhytoplankton*** 
7.06% 

Cow Salinity, Depth, 
Temp 

119 Salinity***, Depth***, 
Temp*** 

28.2% 

Cow Salinity, Depth, 
Temp, 
logPhytoplankton 

119 Salinity***, Depth***, 
Temp***,  
logPhytoplankton*** 

29.9% 

Cow Rainfall24 127 Rainfall24*** 0.113% 
Cow Rainfall24, 

logPhytoplankton 
127 Rainfall24***,  

logPhytoplankton*** 
2.23% 

Human Salinity, Depth, 
Temp 

125 Salinity***, Depth***, 
Temp*** 

54.6% 

Human Salinity, Depth, 
Temp, 
logPhytoplankton 

125 Salinity***, Depth***, 
Temp***, 
logPhytoplankton*** 

61.4% 

Human Rainfall48 126 Rainfall48*** 0.547% 
Human Rainfall24, 

logPhytoplankton 
126 Rainfall24***, 

logPhytoplankton*** 
25.3% 
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Figure 5.7 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. E. coli, B. 
Bird, C. Cow, and D. Human bacterial load as measured by weekly sampling at the sensor site, Wonboyn River.  
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Figure 5.8 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. Rainfall, B. 
Depth, C. Salinity, and D. Temperature values measured in at the sensor site, Wonboyn River.  
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6. Discussion  
 
6.1 High Resolution Sensor Data and Management Plan  
  
Analysis of sensor data during the annual review process demonstrated that there is potential 
to implement a salinity sensor-based management plan for Wonboyn Lake harvest areas. 
Based on the available data, up to six harvest area closures, three in Wonboyn Lake A harvest 
area and six in Wonboyn Lake B harvest area, could have potentially been avoided between 
14 February 2018 and 31 March 2022. During the initial implementation of such a 
management plan change, rainfall events would continue to be monitored to increase the 
database to support the change. Wonboyn Lake Shellfish Program (WLSP) were consulted 
about the option of a salinity-only management plan for Wonboyn Lake harvest areas 
following the 2019 annual review, but a decision has not yet been reached. If WLSP did not 
wish to pursue the implementation of a management plan that is based on sensor salinity, or 
if the salinity sensor data were not accessible, the Wonboyn Lake harvest area management 
plans would revert to the current management plana that are based on both rainfall and 
salinity closure limits. 
 
6.2 Phytoplankton and HABs  
 
Pseudo-nitzschia is a high-risk HAB group in SE Australia for the shellfish aquaculture industry, 
and both estuaries and coastal waters in this area remain under threat (Ajani et al., 2013a, 
2021). Blooms within the Hawkesbury River estuary (330 km south of Wallis River), a high-risk 
area in SE Australia for HAB events, recently experienced a very dense bloom of P. 
delicatissima gp., with one out of seven strains isolated to produce domoic acid (Ajani, 2021). 
Fifteen years of modelled data in the Hawkesbury River estuary revealed that Pseudo-
nitzschia was linked to an increase in soluble reactive phosphorus and a decrease in nitrogen 
at all six sites sampled (via rainfall/nutrient runoff). There is contrasting evidence, however, 
of which environmental conditions promote the blooming of the different species complexes 
(Dermastia et al., 2020). In response to a toxic bloom of Pseudo-nitzschia delicatissima gp. 
(dominated by P. cf. cuspidata) in Wagonga Inlet in April 2019, we have now successfully 
developed a rapid, sensitive and efficient quantitative real-time polymerase chain reaction 
(qPCR) assay to detect P. pseudodelicatissima complex Clade I, to which P. cf. cuspidata 
belongs (Ajani et al. 2021). 
 
Another HAB species that bloomed in Wonboyn River during this study was Alexandrium 
australiense. Approximately 33 species of Alexandrium have been recorded worldwide, of 
which around 10 species can potentially produce Paralytic Shellfish Toxins (PSTs). These are 
A. affine, A. andersonii, A. pacificum (= A. catenella Group IV ribotype); A. australiense (= A. 
tamarense Group V ribotype), A. minutum, A. ostenfeldii, A. catenella, A. tamiyavanichii and 
A. taylori (Anderson et al. 2012, Tomas et al. 2012, John et al. 2014). PSP was first reported in 
Australia in 1935, when typical PSP symptoms were observed following the consumption of 
wild mussels collected from Batemans Bay, NSW (Le Messurier et al. 1935). In 1986, the first 
PSP outbreak in Australia was recorded in Port Philip Bay, Victoria, with A. pacificum (as A. 
catenella) as the causative organism (Hallegraeff et al. 1992). A. pacificum is also the main 
causative agent of PSTs in NSW (Ajani et al. 2013b). In October 2016, high cell densities of this 
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species were detected in the coastal waters of Twofold Bay, NSW, an unprecedented event 
for this location in south eastern Australia. With a maximum cell density (89,000 cells L-1) and 
a concentrations of 7.2 mg/kg PST STX equivalent in blue mussels (Mytilus galloprovincialis) 
from the bay, a four-month shellfish harvest closure ensued (Barua et al. 2020). Another 
unprecedented bloom of this species occurred early in Tasmania in 2012. This toxic event led 
to a worldwide product recall and it was estimated that this toxic event cost the Australian 
industry AUD ~$23 M in lost revenue (Campbell et al. 2013). 
 
Another HAB group to watch in NSW is the toxic dinoflagellate genus Dinophysis. Species 
belonging to this genus (and more rarely benthic Prorocentrum) are the most problematic 
Diarrhetic Shellfish Toxin (DSTs) producers worldwide. With over 100 species represented 
worldwide, ten have been unambiguously found to be toxic (Dinophysis acuminata, D. acuta, 
D. caudata, D. fortii, D. infundibulum, D. miles, D. norvegica, D. ovum, D. sacculus and D. 
tripos), producing DSTs (okadaic acid and dinophysistoxins) even at low cell densities (<103 
cells L-1) (Reguera et al., 2014; Reguera et al., 2012; Simoes et al., 2015).  
 
Dinophysis is common in Australian waters, with 36 species reported (Ajani et al., 2011; 
Hallegraeff and Lucas, 1988; McCarthy, 2013). Toxic species include D. acuminata, D. acuta, 
D. caudata, D. fortii, D. norvegica, and D. tripos. There have been three serious human DSP 
poisoning events in Australia. The first episode was caused by contamination of Pipis 
(Plebidonax deltoides) in New South Wales in 1997 (NSW) by D. acuminata (Quaine et al., 
1997). One hundred and two people were affected and 56 cases of gastroenteritis reported. 
A second episode occurred again in NSW in March 1998, this time with 20 cases of DSP 
poisoning reported (Madigan et al., 2006). The final event occurred in Queensland in March 
2000, when an elderly woman became seriously ill after eating local Pipis (Burgess and Shaw, 
2001). While no human fatalities from DSP are known globally, DSTs continue to be a major 
food safety challenge for the shellfish industry. In response to elevated cell densities of a toxic 
algal species Dinophysis in February 2019 in the Manning River, we have also successfully 
developed a rapid qPCR assay to detect species belonging to the genus Dinophysis in 
environmental samples (Ajani et al. 2022).  
 
Quantitative PCR is an efficient and powerful tool to identify and enumerate HAB species, 
especially those that are difficult to distinguish using routine methods (Handy et al. 2008, 
Penna and Galluzzi 2013). For this reason, this method is used routinely in certain monitoring 
programs around the world (Clarke & Gilmartin 2020). We have now developed qPCR assays 
for Alexandrium (sxtA gene) (Ruvindy et al. 2018), Dinophysis spp. (Ajani et al. 2022) and 
Pseudo-nitzschia pseudodelicatissima complex Clade 1 (Ajani et al. 2021). The qPCR assays 
can be used on-farm, allow for automation, are easy to use without specialist knowledge, and 
provide an early warning that harmful algae are present in the water column. It is envisaged 
that high-resolution, real-time environmental data, combined with sensitive, specific and 
efficient molecular tools such as we have developed in the current study, will enable us to 
effectively predict and manage these blooms into the future. 
 
6.3 Assay Development and Faecal Pollution in Wonboyn River 
Molecular assays for the detection of faecal bacterial contamination in Wonboyn River were 
determined with two main aims. The first was to design a faster method for the currently used 
place count methodologies for the detection of faecal indicator bacteria by commercial 
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laboratories and secondly, for source tracking. This later assay would be used to identify which 
animals might be contributing to any E. coli in the river system. Assays needed to be sufficiently 
specific to only the target organism, to have a sufficiently low level of detection, and finally have 
a high level of efficiency, in line with the best practice guidelines for qPCR assays (Bustin et al. 
2009). 
 
E. coli is the primary faecal indicator bacterial species, and is most commonly used for detecting 
faecal contamination using culture-based methods (Odonkor & Ampofo 2013, NHMRC 2011). 
Although there are assays that target genes that detect faecal coliforms (Isfahani 2017), genetic 
variability between coliforms makes it a challenge for accurate assessment (Maheux et al. 2014). 
As E. coli is tested for in oyster meat (NSWFA 2015, 2017). E. coli was considered to be a more 
targeted approach to also detect in estuarine waters. In this study, several primer pairs were 
trialled which targeted 3 different genes within E. coli, with the final E. coli assay selected being 
the most efficient and specific only to the target organism (Tesoreiro 2020). 
 
The second group of assays developed were those that were microbial source tracking as they 
detect bacteria of faecal origin specifically associated with a group of animals, i.e. bird, cow and 
human. Birds are a significant source of faecal contamination in estuarine/marine waters during 
dry periods, and increase faecal indicator bacteria load in catchments (Araujo et al. 2014, 
Converse et al. 2012). The marker we used was 100% avian specific, with gulls, geese, ducks and 
chickens being tested (Green et al. 2012) and has been successfully used in catchments across 
different continents (Ahmed et al. 2016, 2019; Li et al. 2019, Vadde et al. 2019). Our source 
tracking assay for cows had 100% sensitivity to bovine faecal samples, with little cross reactivity 
to other species (93% specific). When tested in a rural catchment, a high proportion of faecal 
contamination was attributable to cattle (Layton 2006). Finally, the human marker we used has 
demonstrated the best performance for the detection of human faecal contamination compared 
to all other assays since it was developed in 2000 (Boehm 2013, Shanks 2010). 
 
In most coastal and estuarine systems, an increase in bacterial load is usually linked to an increase 
in rainfall and a decrease in water salinity. These events most likely lead to a concomitant increase 
in nutrients entering the waterway (Amato et al. 2020, Abimbola et al. 2021, Liang et al. 2019, 
Buszka & Reeves 2021), providing bioavailable nutrient forms for phytoplankton growth. E. coli 
pollution entering a waterway can also induce nutrient recycling and accelerate the 
decomposition of other organics like aquatic plants, further releasing nutrients into the system 
(Wu et al. 2021). The survival and proliferation of E. coli in the aquatic systems have also been 
found to be strain specific, with hydrological conditions, differing sources of pollution, selective 
pressures in the waters, and various land uses, all contributing to the community structure and 
diversity of E. coli in a waterway (Bong et al. 2021).  
 
While cow and human bacterial contamination was extremely low across the sampling period in 
Wonboyn River, modelling revealed that E. coli, and to a lesser extent the bovine bacterial load 
entering the estuary were linked to a varying salinity, which in turn may be linked to a lack of 
flushing and/or a lag with input from the upper catchment. 
 
Wonboyn River is a relatively small catchment of <340 km2. The upper catchment is primarily 
steep forested terrain. It may be the case that the pattern of increasing salinity and increasing 
bacterial load reflects more influence from the wider catchment (i.e., localised rainfall has ceased, 
salinity is recovering but inputs from further upstream are still influencing water quality). It may 
also be confounded with the closing of the lake mouth. During the study period the mouth closed 
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on 6 Oct 2019 and reopened on 12 Feb 2020. It closed again on 5 Mar 2020 and reopened on 1 
June 2020. The mouth remained opened at other times across the study period. 
 
Avian faecal pollution in Wonboyn River, however was linked to a specific salinity and water 
temperature, and was observed to peak during the autumn and summer months. This peak 
coincided with the Australian forest mega-fires of 2019/2020 (Boer et al. 2020), whereby coastal 
areas may have been a relatively safer refuge during that extreme period. The molecular marker 
used in this study, however, does not discriminate between avian species (gulls, geese, chickens, 
ducks etc), so it is uncertain what percentage of the bacterial load is attributable to terrestrial 
birds and that of aquatic birds. Further discrimination into the breakdown of the faecal load would 
be required for this elucidation. 
 
The low levels of human bacterial contamination observed in this study may suggest that water 
quality management efforts in regard to sources of human contamination over the past two 
decades are working. Sewer overflows and septic tank seepage present the highest impact/risk 
for human contamination in Wonboyn River. It was suggested that, due to the wider range of 
human enteric viruses in a large number of oyster and sediment samples, the outbreak of 
hepatitis A linked to the consumption of oysters from Wallis Lake in 1997 was linked to significant 
sewage or faecal contamination. New legislation followed on from this event, tightening controls 
over septic maintenance, new sewerage management plans developed, and a mandatory 
notification system for sewage overflows introduced. Following this, mandatory membership for 
industry to Shellfish Quality Assurance Programs was implemented and an estuary classification 
system introduced (Conaty et al. 2000).  

The future use of molecular tools such as qPCR for the detection and quantification of bacteria or 
HABs would require further validation in accordance with the Association of Official Agricultural 
Chemists (AOAC) procedures for the validation of such tests. This would include the validation of 
the sensitivity, precision and reliability of methods and a rigorous comparison to existing 
methods. Methodology and protocols for sampling accreditation and assurance of independence 
in testing and reporting for on farm testing would then follow. 

Increases in whole oyster weight in Wonboyn River were greatest in the second half of the 
experiment from August 2019 to June 2020. However, oysters did not grow significantly larger in 
terms of their shell size over the entire experiment. Salinity levels throughout the experimental 
period remained above 30 ppt for most of the experiment other than three occasions in late 2019, 
early 2020 and after February 2020.  On these occasions’ salinity did not drop below 26 ppt. Higher 
salinities increase seawater alkalinity providing more calcium carbonate available for oyster shell 
deposition. The salinity level that promotes the greatest growth rates in Sydney Rock Oyster spat 
is 30 ppt for small spat (1.3 mg) and 35 ppt for larger spat (0.61 g) (Nell and Holliday, 1988).  The 
period of maximum whole weight increase occurred over the last 10 month of the experiment 
which was also characterised by stable salinity levels above 30 ppt other than in the period after 
February 2020 where salinity dropped rapidly to approximately 25 ppt and remained around this 
level until June 2020 (Figure 5.1 B). Water temperature levels during the 2018 and 2019 winter 
months were dropping to levels below 12 °C. Growth of Sydney Rock Oyster at temperatures 
below this level would be minimal to non-existent.   
 
Low levels of oyster mortality were recorded in most months during the experiment.  However, 
oyster mortality between assessments did not exceed 5% at any time. Cumulative oyster mortality 
over the study period did exceed the background Sydney Rock Oyster farming mortality level 
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which is estimated to be approximately 10% cumulative mortality in February 2020 was 22.7% 
and comparable to cumulative mortality measured on the same date in the Hawkesbury River 
(22%).  However, Hawkesbury River is an estuary that is affected by QX disease which is likely to 
increase Sydney Rock Oyster mortalities over the study period.  Mortality in Wonboyn River was 
greatest in the first four months of the experiment (August to December 2018). This is generally 
the time period when losses attributable to winter mortality disease are detected.  The only 
monitoring sites that experienced more oyster mortality than Wonboyn River over the study 
period were Camden Haven River (39.7% cumulative mortality) and Hastings River (34.0% 
cumulative mortality).  There were no oyster sampling events where mortality exceeded 5 % in 
Wonboyn River.  
 
The cumulative mortality in Wonboyn River over the 18 months of this experiment was very 
similar to that measured in a previous study which also ran for 18 months (8/5/2014 to 19/11/15) 
in Wonboyn River (Hall-Aspland et al. 2015).  Hall-Aspland et al. 2015 measured a combined 
average cumulative mortality of 21%in wild Sydney Rock Oysters deployed at 4 sites in Wonboyn 
River over an 18-month deployment.  Wonboyn had the highest mortality compared to all other 
NSW south coast estuaries (Shoalhaven River, Clyde River, Wagonga Inlet, Wapengo Lake, 
Merimbula River, Pambula River) monitored in Hall-Aspland et al. 2015.  Oyster shell length 
increases were recorded and were 12 mm for wild oysters over the 18-month study Hall-Aspland 
et al. 2015.    
 
The batch of oysters used for this experiment were a random mix of families taken from the 2016-
year class of the Sydney Rock Oyster Breeding program. This particular year class had 86% of the 
parents selected from wild and QX disease resistant genetic groups. Only 14% of the parents for 
this year class were sourced from the fast growth genetic group. It took this year class 12 months 
to reach the ‘medium’ oyster size grade with respect to oyster whole weight (30 – 50 g).  However, 
oysters in Wonboyn River did not reach the ‘large’ size grade (> 70 mm total length or > 50 g whole 
weight) by the end of the experiment (June 2020).     
 
Wonboyn River is ranked 14th in the state for Sydney Rock Oyster production with 101,000 dozen 
oysters sold annually worth $1.1 million (NSW Department of Primary Industries, 2023).  Oyster 
growth in Wonboyn River, in terms of size and weight, was ranked lowest amongst all estuaries 
monitored for this study. Most Sydney Rock Oysters in Wonboyn River are sold at the medium 
size grade. The medium size grade for Sydney Rock Oysters is specified as 55-70 mm total length 
or 30-50 g whole weight (NSW Department of Primary Industries 2022). Oysters in Wonboyn River 
reached the medium size benchmark for whole weight in August 2019 when they were 33 months 
in age from the date they were spawned.   
 
6.5 Outreach  

Outreach and project materials developed during Stage 1 of this project include two scientific 
publications - Harmful Algae (international scientific journal) and The Conversation, and a further 
one in preparation; one Department of Primary Industry Report; three newsletters/factsheets; 
sixteen seminars/conferences/workshop presentation and four videos/YouTube posts (Appendix 
3). Regular program progress reports were provided to the NSW Shellfish Committee and the 
NSW Aquaculture Research Advisory Committee. 
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7. Conclusions  
The data assessment from this report supports implementing a harvest area management plan 
based on sensor salinity data for Wonboyn Lake harvest areas, subject to agreement by the local 
shellfish industry. Available data indicated that up to six harvest area closures, three in Wonboyn 
Lake A harvest area and six in Wonboyn Lake B harvest area, could have potentially been avoided 
between February 2018 and March 2022. As of January 2023, eighteen salinity-only management 
plans had been offered for harvest areas in participating NSW estuaries, with six being taken up 
and the remaining twelve under consideration. 
 
Compared to the other monitoring sites in NSW, oyster growth in Wonboyn River was ranked last 
in terms of whole oyster weight and shell length. Low levels of mortality (< 5%) were recorded 
over the period from August 2018 to February 2020, however cumulative mortality over the entire 
experiment exceeded the level accepted as background farming mortality (approximately 10% 
per annum).  Most oysters in Wonboyn River are marketed at the medium size grade and oysters 
were 33 mo when they reached this benchmark for whole oyster weight.  
 
The pollution source tracking results were highly variable across the study period, most likely 
attributable to the extreme variation in environmental conditions experienced (drought, bush 
fires, floods). Real time sensor data (increasing salinity) however, showed a higher predictive 
capability than rainfall for all four faecal indicator bacteria. Furthermore, the contamination from 
bird sources was observed at high levels, with a distinct presence throughout the black summer 
bushfires 2019-2020 was observed. Finally, contamination from human sources was observed 
rarely, and at very low levels. 
 
PCR based assays demonstrate significant potential to supplement and/or replace classical 
environmental sample analytical methods. The benefits of PCR based analysis includes reduced 
cost, faster sample turnaround time and potentially the ability to analyse samples on-site, 
removing the need for the cost and delay of sample transport. Sample transport often comprises 
>50% of the delay between sample collection and result reporting. These delays cost industry 
money and reduce the utility of samples for risk management purposes. Future work should focus 
on validating qPCR methods in accordance with AOAC procedures.  

Overall these results demonstrate the utility of salinity-based management plans for predicting 
potential contamination events and managing water quality risks. Real time sensor data, 
combined with rapid molecular tools, can help predict optimal conditions for harvesting and 
growth. This has the potential to improve regulatory and management outcomes and enhance 
the productivity and profitability of oyster farming in Wonboyn River.  
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9. Appendices  

A1. Methods   

A1.1 Sampling locations in Wonboyn River  

Data used in this report originates from locations within Wonboyn River over the period Feb 2018 to 
Feb 2021. High-resolution temperature, salinity and depth data were obtained from a sensor located 
in Wonboyn Lake harvest area A, Wonboyn River, from 13 Feb 2018 to 4 Feb 2021 (Fig. A1). At this 
location, oysters were both deployed and retrieved, and water samples for eDNA were collected. From 
here on, this location is referred to as the ‘sensor site’. Phytoplankton was also collected at a second 
sampling location established as part of the DPI’s Shellfish Quality Assurance program (Fig. A1).  

 

Figure A1: Map of Wonboyn River highlighting the sensor location in Wonboyn Lake A (black squares), and the 
phytoplankton sampling location (black circle). 

A1.2 High-resolution sensor data  

High-resolution temperature (℃), salinity and water depth (m) data were collected at the sensor site 
using Seabird SBE 37-SM/SMP/SMP-ODO MicroCAT high accuracy conductivity, temperature and 
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depth (CTD) field sensors. This sensor was deployed using a fixed installation, with the inlet 60 cm 
above the seabed and at least 30 cm below the estimated Lowest Astronomical Tide (LAT) (Fig. A2). 
This fully autonomous instrument collected and transmitted data every 10 minutes (24 h day-1) to 
Microsoft Azure cloud storage before downstream quality checking and analysis. Sensor data was then 
packaged into RO-Crates by the e-Research team at UTS, which are then uploaded to an Arkisto-based 
website. This website allows for the filtering and downloading of these crates based on both time and 
location, for use in research and analysis (Fig. A3). Finally, rainfall data were obtained from the closest 
rainfall WLSP/Henry’s gauge at 37.25oS, 149.919oE 

  

Figure A2 Seabird MicroCAT high accuracy conductivity, temperature and depth (CTD) field sensor deployed in 
Wonboyn River. Image Credit: ICT International 

 

Figure A3. Wonboyn River data provenance chain from source of data (sensors), via quality assurance 
processes, data analyses, to consumers.  
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A1.3 DPI Management Plan review  

Evaluation of the harvest area management plans for each NSW harvest area occurs annually. This is 
carried out by the NSW Shellfish Program (NSW DPI Food Authority). The date of the Wonboyn Lake 
annual review is 1 April. All available salinity data from the monitoring sensors during the 2017, 2018, 
2019, 2020, 2021 and 2022 annual review periods were assessed in relation to microbiological samples 
collected by the local shellfish program during the same period. There was a gap in salinity data 
between 4 and 14 January 2020 due to a disruption to the local telecommunication network, following 
an extensive bushfire event. Salinity data were limited between 15 June 2020 and 17 July 2020 due to 
instrument error. The original sensor ceased reporting on 4 February 2021 and data collection 
resumed with a new sensor on 13 April 2021. There was a gap in salinity data between 1 and 28 
February 2022 due to instrument error. 

A1.4 Biological sampling and eDNA extraction   

Estuarine water samples were collected weekly by oyster farmers working at Wonboyn Rock Oysters 
(Caroline and Kel Henry) from September 2018 - September 2020 for both phytoplankton and 
bacteria. For algal samples, 3L sub-surface water samples (0.5 m, in triplicates) were collected and 
filtered using a specially made PVC sampler. Samples were then stored at 4 ℃ until further 
downstream processing. DNA was then extracted using the DNeasy 96 PowerSoil Pro QIAcube HT Kit 
(Qiagen) and DNA stored at -20℃ until further analysis.  

In the case of a rainfall event, water samples were collected for bacterial analysis (only) every 24 h 
over a two-day period commencing on the first day of rainfall and processed as described above. Daily 
rainfall measurements were taken from the closest available weather stations at WLSP/Henry’s gauge 
(37.25oS, 149.919oE) NSW, which is approximately ~1.2 km from the sensor site.  

A1.5 qPCR assays for bacterial source tracking  

Realtime qPCR tests were carried out on all water samples in triplicate for bacterial source tracking of 
E. coli, bird, cow and human faecal indicators.     

A1.6 Phytoplankton enumeration  

Water samples (500 ml) were collected at approximately 2-weekly intervals from a depth of 0.5 m 
closest to the sensor for microscopic phytoplankton identification and enumeration in accordance 
with the NSW Marine Biotoxin Management Plan (NSW MBMP 2015) and the Australian Shellfish 
Quality Assurance Program (ASQAP). Once collected, samples were immediately preserved with 1% 
Lugol's iodine solution, and returned to the laboratory for concentration using gravity-assisted 
membrane filtration. Detailed cell examination and counts were then performed using a Sedgewick 
Rafter counting chamber and a Zeiss Axiolab or Standard microscope equipped with phase contrast. 
Cells were identified to the closest taxon that could be accurately identified using light microscopy 
(maximum magnification x1000). Cell counts were undertaken to determine the abundance of 
individual HAB species and total phytoplankton cell (>5 mm) numbers. Dinophysis cells were counted 
to a minimum detection threshold of 50 cells L-1 while all other species were counted to a minimum 
detection threshold of 500 cells L-1.  

A1.8 Oyster Growth and Mortality   

At the sensor site, we also deployed two types of experimental Sydney Rock Oysters (Saccostrea 
glomerata). The first group of oysters were all the same age and used to collect weekly samples at the 
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sensor site when water samples were collected for downstream processing. Three oysters were 
removed on each sampling occasion and placed whole and live into a freezer for preservation.   

The second group of experimental oysters were obtained from the NSW DPI Sydney Rock Oyster 
Breeding Program and were deployed at the sensor site to measure shell length (Fig. A4), whole weight 
and mortality.  These oysters were from the 2016-year class and were the same age, size and 
originated from a single genetic group. Three replicate floating baskets were placed on the designated 
oyster sampling lease and each replicate unit contained approximately 70 oysters.   

A1.8.1 Oyster Whole Weight  

Whole weight was measured in August 2018, February 2019, August 2019, February 2020 and finally 
in June 2021. Thirty randomly sampled oysters from each replicate were pooled and weighed on each 
sampling date using a calibrated weight balance to the nearest 0.1 g.  The average whole weight of 
oysters at the start of the experiment in August 2018 was 22.6 ± 1.4 g.   

A1.8.2 Shell Length  

Oyster shell length was measured ~monthly from August 2018 to June 2020 (Fig. A4). A subsample of 
30 oysters from each replicate were measured on each sampling occasion. The 30 oysters from each 
replicate were arranged on a measuring board that included a scale bar. A digital image was taken and 
GrabIt software (MyCommerce Inc, Minnetonka, MN, USA) was used to estimate the shell length (mm) 
of oysters in the images provided.   

  

Figure A4. Oyster shell dimensions (Carriker 1996)  

 A1.8.3 Oyster Mortality   

Oyster mortality was calculated by counting the number of empty oyster shells in each replicate 
approximately each month from August 2018 to February 2020.  After empty oyster shells were 
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counted, they were removed from the experimental baskets. Oyster farmers performed the counts 
and recorded this information during the experiment.  

A1.9 Modelling  

To model the relationship between pathogens and oyster growth in this estuary, a series of models 
were run to investigate firstly the predictors of faecal bacteria abundance and secondly, oyster 
growth.  

Daily averages for all sensor measurements taken on a calendar day, midnight to midnight, were then 
calculated. A simple unweighted average was taken over all observations. Data for a day was regarded 
as missing if fewer than 96 observations were made. 24 h, 48 h, 72 h and weekly salinity and 
temperature averages were then calculated by taking the simple unweighted averages of each day’s 
daily average. Where a day’s data were missing, all other variables which relied on this were classified 
as missing. For example, if no observations were recorded on 1 June, then the 1 June 24 h average 
was missing, the 1 June and 2 June 48 h average was missing, the 1 June, 2 June and 3 June 72 h 
average were missing (Appendix 2).  

Rainfall data from the WLSP/Henry’s gauge (37.25oS, 149.919oE from Feb 2018 to Feb 2021), which 
was the official management plan gauge for this harvest area, were averaged over the 24 h, 48h, 72 h 
and 7 days prior to the water sampling each day, to incorporate a measure of exposure of the bacterial 
community and deployed oysters. Total phytoplankton (and log transformed total phytoplankton) 
from microscopic phytoplankton enumeration was also included in the modelling as a potential 
predictor variable. Finally, week of the year and water depth were included in the models to 
understand any seasonality or tidal variability that was present in the data.  

To model the relationship between bacteria (E. coli, bird, cow, human) abundance and/or oyster 
growth (response variables) and environmental variables (temperature, salinity, week, depth, total 
phytoplankton, rainfall) at the sensor location within Wonboyn River, correlation analyses were 
initially undertaken to explore the relationships between variables. Generalised additive models 
(GAMs) were then applied to the data. GAMs allow abundance data to be treated as count data 
(discrete integer values), and as such can handle zero counts. GAMs also allow for smoother functions 
to be incorporated into each model for the environmental variables that had a non-linear relationship 
with bacterial abundance.   

Input data (predictor variables) were the sensor observations for both salinity and temperature, 
including aggregation over several different time periods, including depth, week and total 
phytoplankton (logged or unlogged). For comparison to current (non-sensor-based) practice, models 
were also run using only rainfall data. Again, these included depth, week and total phytoplankton. As 
total phytoplankton data is not available in real time, and therefore not considered a predictor 
variable by definition, models were run both with and without this variable. In summary, four models 
were developed for each of the bacterial sources: rainfall only, rainfall and total phytoplankton; sensor 
only; and sensor and total phytoplankton.   

To model the relationship between oyster growth various GAMs models were also investigated using 
the sensor/total phytoplankton/rainfall data for the same time period. These models were then fitted 
in version 3.4.3 of the R statistical package (Team R Core, 2013), using the GLM function in version 
1.8–22 of the ‘mgcv’ package (Wood, 2006). Models were then compared using the Akaike 
information criterion (AIC) and the model with the lowest AIC selected.  
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Appendix 2. Summary Statistics for Bacterial Modelling – Sensor site, Wonboyn River. 

 

  

Variable Mean Standard Error Median Standard Deviation Minimum Maximum Count Missing
average_cfu 70.9 21.6 16.6 243.7 0.0 1830.4 127 0
bird 3722.7 727.6 296.6 8199.1 0.0 47038.5 127 0
cow 733.8 218.9 62.5 2467.2 0.0 19468.6 127 0
depth24 0.8 0.0 0.7 0.3 0.4 1.5 127 2
depth48 0.8 0.0 0.7 0.2 0.4 1.4 127 5
depth72 0.8 0.0 0.7 0.2 0.4 1.4 127 8
ecoli 7505.9 2149.5 2186.8 24223.4 0.0 182187.6 127 0
human 8.9 4.3 0.0 48.5 0.0 411.5 127 0
logPhytoplankton 14.2 0.1 14.2 1.1 11.6 17.2 127 0
Phytoplankton 2653779.5 365496.1 1400000.0 4118931.7 110000.0 29000000.0 127 0
rainfall24 3.0 0.6 0.0 7.0 0.0 45.4 127 0
rainfall48 3.1 0.5 0.5 5.6 0.0 36.9 127 1
rainfall72 3.1 0.4 1.3 4.7 0.0 27.6 127 2
salinity24 30.3 0.6 32.1 6.9 1.0 39.0 127 2
salinity48 30.4 0.6 32.3 6.7 1.1 38.9 127 5
salinity72 30.5 0.6 32.3 6.6 2.7 38.7 127 8
temp24 18.1 0.4 18.4 4.7 10.7 26.6 127 2
temp48 18.2 0.4 19.0 4.7 10.8 26.4 127 5
temp72 18.3 0.4 19.3 4.6 10.9 26.1 127 8
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Appendix 3.  Summary of project related publications, seminars, workshops, conference 
presentations and other project related public presentations.   

Author(s)  Title  Bibliographic details  Status   
(Submitted, 
Accepted, 
Published)  

Penelope Ajani, 
Hernan Henriquez-
Nunez, Arjun 
Verma, Satoshi 
Nagai, Matthew 
Tesoriero, Hazel 
Farrell, Anthony 
Zammit, Steve Brett 
and Shauna 
Murray   

Mapping the 
development of 
Dinophysis spp. HABs 
using a novel molecular 
qPCR assay  

Harmful Algae 116 (2022)102253 Published  

Penelope Ajani, 
Arjun Verma, Jin Ho 
Kim, Hazel Farrell, 
Anthony Zammit, 
Steve Brett & 
Shauna Murray  

  

Using qPCR and high-
resolution sensor data to 
model a multi-species 
Pseudo-nitzschia 
(Bacillariophyceae) bloom 
in southeastern Australia  

Harmful Algae 108 (2021) 102095  Published  

NSW DPI  Net Returns of Real-Time 
Sensors and Salinity-
Based Management Plans 
in NSW Oyster Production 
- Report  

https://www.foodauthority.nsw.gov.au/about-
us/science/science-in-focus/real-time-sensors-
shellfish-harvest-area-management  

Published  

NSW DPI  Net Returns of Real-Time 
Sensors and Salinity-
Based Management Plans 
in NSW Oyster Production 
- Factsheet  

https://www.foodauthority.nsw.gov.au/about-
us/science/science-in-focus/real-time-sensors-
shellfish-harvest-area-management  

Published  

The Team  Oyster Transformation 
Project  

NSW Oyster Newsletter  

https://www.nswoysters.com.au/nsw-oyster-
newsletter.html  

July 2020  

Published  

Penelope A. Ajani, 
Michaela E. Larsson, 
Stephen Woodcock, 
Ana Rubio, Hazel 
Farrell, Steve Brett, 
&Shauna A. Murray. 

Fifteen years of Pseudo-
nitzschia in an Australian 
estuary, including the first 
potentially toxic P. 
delicatissima bloom in the 
southern hemisphere 

Estuarine, Coastal and Shelf Science, 236 (2020) 
106651. 

Published 

DPI Food Authority  Foodwise - Issue 46  https://www.foodauthority.nsw.gov.au  

Feb 2018  

Published  

Shauna Murray & 
Penelope Ajani  

Ah shucks, how bushfires 
can harm and even kill our 
delicious oysters  

The Conversation  Published  

https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.foodauthority.nsw.gov.au/
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https://theconversation.com/ah-shucks-how-
bushfires-can-harm-and-even-kill-our-delicious-
oysters-131294 Aug 2020  

  

 

Presenter(s)  Event/Activity  Presentation title  
Matthew Tesoriero  

(Supervisors: Arjun Verma 
and Shauna Murray)  

Final Hons Seminar,   

School of Life Sciences, UTS, 
2020  

Abundance and distribution of pathogenic bacteria 
in NSW oyster producing estuaries  

Shauna Murray, Penelope 
Ajani, Arjun Verma, Rendy 
Ruvindy, Jin Ho Kim & Kate 
McLennan  

Australasian Society for 
Phycology and Aquatic Botany 
Annual Conference 2020  

Using molecular genetic techniques to detect 
harmful algal bloom-forming species impacting 
aquaculture  

Arjun Verma & Matt 
Tesoriero           

Catchment, Estuary and 
Wetland Mapping, Modelling 
and Prioritisation Workshop 
2020  

Oyster Transformation Project  

Shauna Murray & Matt 
Tesoriero      

Manning River Estuary CMP 
Discussion Group - Sewerage 
and Septic Pathogen Risks 
2020  

Discussion Group  

Wayne O’Connor  Aust & NZ Biotechnology 
Conference, May, 2019, 
Sydney  

Plenary Address: The future of NSW Aquaculture: 
the need for clever solutions  

Shauna Murray, Arjun 
Verma, Swami Palanisami & 
Penelope Ajani  

Australia New Zealand Marine 
Biotechnology Conference 
(ANZMBS) 2019  

The use of eDNA and arrays for precise estuarine 
water quality assessment  

Arjun Verma, Swami 
Palanisami, Penelope Ajani 
& Shauna Murray  

Australian Marine Science 
Association Conference 2019  

Novel molecular ecology tools to predict harmful 
algal blooms in oyster- producing estuaries  

Arjun Verma and Matthew. 
Tesoriero  

Trade table, NSW Oyster 
Conference, Forster NSW 
2019  

Oyster Transformation Project  

Penelope Ajani, Arjun 
Verma & Shauna Murray  

NSW Oyster Conference, 
Forster NSW (Poster 
Presentation) 2019  

Common harmful algae in the oyster growing 
estuaries of New South Wales.  

Wayne O’Connor   DPI, Senior Scientist 
Symposium. EMAI, Camden, 
November 2018  

Overview and Progress – Oyster Transformation 
Project  

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Estuarine Coastal Shelf Science 
Conference 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

  

  
Wayne O’Connor  Macquarie University, 

Microbiomes Workshop, 
Epping, November 2018  

Overview and Progress – Oyster Transformation 
Project  

https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
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Shauna Murray, Arjun 
Verma, Penelope Ajani, 
Anthony Zammit, Hazel 
Farrell, Swami Palanisami & 
Wayne O’Connor  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Building profitability and sustainability in the NSW 
oyster industry  

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

Hazel Farrell, Grant 
Webster, Phil Baker, 
Anthony Zammit, Penelope 
Ajani, Shauna Murray & 
Steve Brett  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Developing phytoplankton and biotoxin risk 
assessments for both shellfish aquaculture and wild 
harvest shellfish in New South Wales.  

Wayne O’Connor  SIMS, July 2017  Oyster Research Overview Presentation  

  

Presenter(s)  Event  Presentation title  
Shauna Murray & Arjun 
Verma  

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s   

  

Sept. 2019: PROJECT 
NEWS: Can World 
Leading Research 
Transform the NSW 
Oyster Industry?   

Shauna Murray  https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s   

  

Sept. 2020: Food 
Agility CRC – 
Cooperative Research 
Centre customer story 
   

Arjun Verma & Penelope 
Ajani  

https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s  

  

Feb. 2020: Food 
Agility Summit 2020: 
WE LOVE SCIENCE!   

Anthony Zammit  https://www.cnbc.com/video/2017/03/05/one-of-the-most-
sustainable-farming-enterprises-meets-hi-tech.html   

  

Mar 2017: One of the 
most sustainable 
farming enterprises’ 
meets hi-tech  

 

 

 

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s
https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s
https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com

